0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 456 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 175 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 466 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 143 ms)
↳24 CpxRNTS
↳25 FinalProof (⇔, 0 ms)
↳26 BOUNDS(1, n^1)
f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))
f(a, empty) → g(a, empty) [1]
f(a, cons(x, k)) → f(cons(x, a), k) [1]
g(empty, d) → d [1]
g(cons(x, k), d) → g(k, cons(x, d)) [1]
f(a, empty) → g(a, empty) [1]
f(a, cons(x, k)) → f(cons(x, a), k) [1]
g(empty, d) → d [1]
g(cons(x, k), d) → g(k, cons(x, d)) [1]
f :: empty:cons → empty:cons → empty:cons empty :: empty:cons g :: empty:cons → empty:cons → empty:cons cons :: a → empty:cons → empty:cons |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
f
g
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
empty => 0
const => 0
f(z, z') -{ 1 }→ g(a, 0) :|: z = a, a >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + x + a, k) :|: z = a, a >= 0, x >= 0, z' = 1 + x + k, k >= 0
g(z, z') -{ 1 }→ d :|: z' = d, d >= 0, z = 0
g(z, z') -{ 1 }→ g(k, 1 + x + d) :|: z' = d, x >= 0, d >= 0, k >= 0, z = 1 + x + k
f(z, z') -{ 1 }→ g(z, 0) :|: z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
g(z, z') -{ 1 }→ g(k, 1 + x + z') :|: x >= 0, z' >= 0, k >= 0, z = 1 + x + k
{ g } { f } |
f(z, z') -{ 1 }→ g(z, 0) :|: z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
g(z, z') -{ 1 }→ g(k, 1 + x + z') :|: x >= 0, z' >= 0, k >= 0, z = 1 + x + k
f(z, z') -{ 1 }→ g(z, 0) :|: z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
g(z, z') -{ 1 }→ g(k, 1 + x + z') :|: x >= 0, z' >= 0, k >= 0, z = 1 + x + k
g: runtime: ?, size: O(n1) [z + z'] |
f(z, z') -{ 1 }→ g(z, 0) :|: z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
g(z, z') -{ 1 }→ g(k, 1 + x + z') :|: x >= 0, z' >= 0, k >= 0, z = 1 + x + k
g: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
f(z, z') -{ 2 + z }→ s :|: s >= 0, s <= 1 * z + 1 * 0, z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0
g(z, z') -{ 2 + k }→ s' :|: s' >= 0, s' <= 1 * k + 1 * (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k
g(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
g: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
f(z, z') -{ 2 + z }→ s :|: s >= 0, s <= 1 * z + 1 * 0, z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0
g(z, z') -{ 2 + k }→ s' :|: s' >= 0, s' <= 1 * k + 1 * (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k
g(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
g: runtime: O(n1) [1 + z], size: O(n1) [z + z'] f: runtime: ?, size: O(n1) [z + z'] |
f(z, z') -{ 2 + z }→ s :|: s >= 0, s <= 1 * z + 1 * 0, z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0
g(z, z') -{ 2 + k }→ s' :|: s' >= 0, s' <= 1 * k + 1 * (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k
g(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
g: runtime: O(n1) [1 + z], size: O(n1) [z + z'] f: runtime: O(n1) [2 + z + 2·z'], size: O(n1) [z + z'] |